Universal Perturbation Attack against Image Retrieval

Li et al., ICCV 2019

Presented by: Woo Jae Kim

Table of Contents

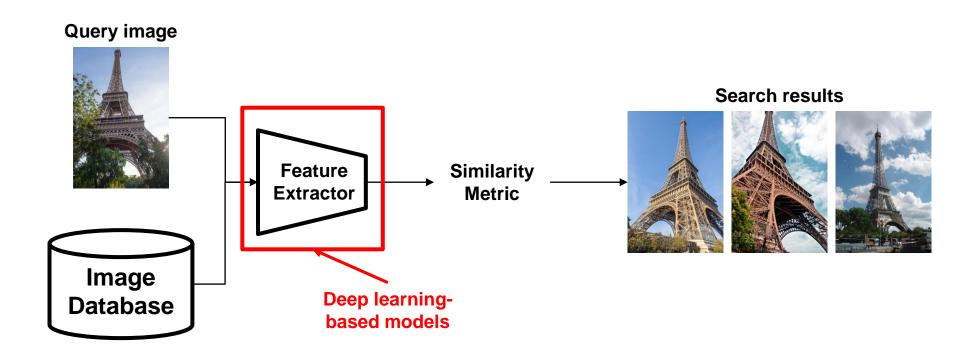
- Backgrounds & Motivation
- Related Works
- Methods
- Experiments
- Conclusion

BACKGROUNDS & MOTIVATION

4. Visual Search at Pinterest, SIGKDD 2015

DL-Based Image Retrieval

- Image retrieval these days relies on <u>Deep Learning</u>
 - eBay -> ResNet-50 ¹
 - SK Planet, Alibaba → Inception-based network ^{2, 3}
 - Pinterest → AlexNet & VGG ⁴



Robustness of Deep Learning

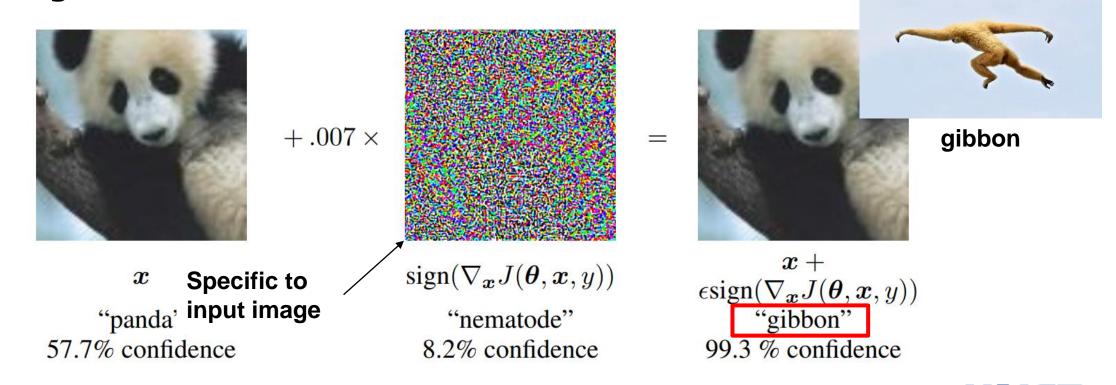
 However, deep learning is not robust

- It is susceptible to specific types of noise
- This noise is called <u>"adversarial attack"</u>

Adversarial Attack

• Then, what is adversarial attack?

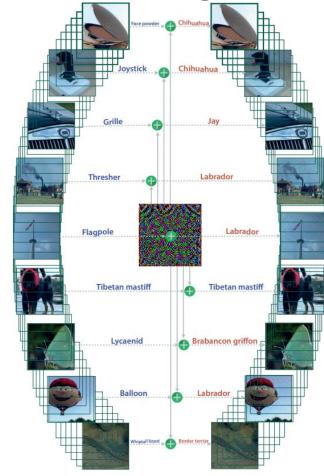
Imperceptible perturbation maliciously designed to fool machine learning models



Universal Adversarial Attack

 Universal Adversarial Perturbation (UAP) — <u>A single perturbation</u> can be added to <u>any image</u> to fool machine learning model

- Strengths
 - Can attack images on-the-fly
 - Can attack unknown images
- Focuses on classification task



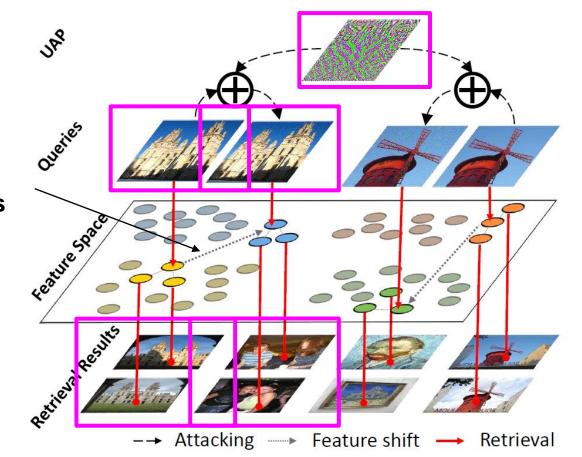
Problems of UAP on Image Retrieval

- However, UAP on classification (UAP-C) <u>cannot be used in image</u> <u>retrieval</u>
 - 1. UAP-C requires datasets with <u>labeled categories</u>
 - 2. UAP-C only fools *top-1 prediction*
 - 3. UAP-C assumes <u>fixed size inputs</u>
 - 4. Classification model produces *continuous probability* as output

Goals

- Build UAP specific to image retrieval task (UAP-IR)
 - Disrupt the neighborhood relationship among features

Perturbing neighborhood relationship among features



RELATED WORKS

Image-Specific Attack on Classification

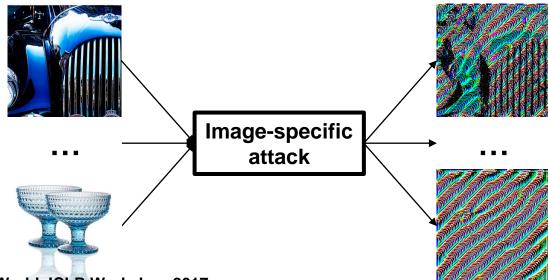
- Gradient-Based Attacks
 - In classification task, classification loss is minimized by using gradient descent
 - Gradient-based attacks "maximize" the loss by adding gradient to image x

$$x^{adv} = x + \operatorname{sign}(\nabla J(w))$$

Image-Specific Attacks

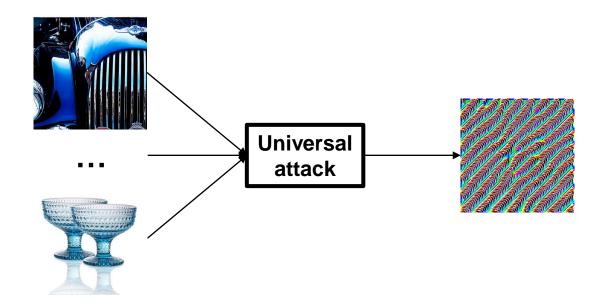
Cross-entropy loss of x^{adv}

Different perturbations are generated for each image



Universal Attack on Classification

- Universal Adversarial Perturbations (UAP)
 - Single perturbation is added to any image to form adversarial image
 - Also optimized to <u>maximize classification loss</u> of adversarial image

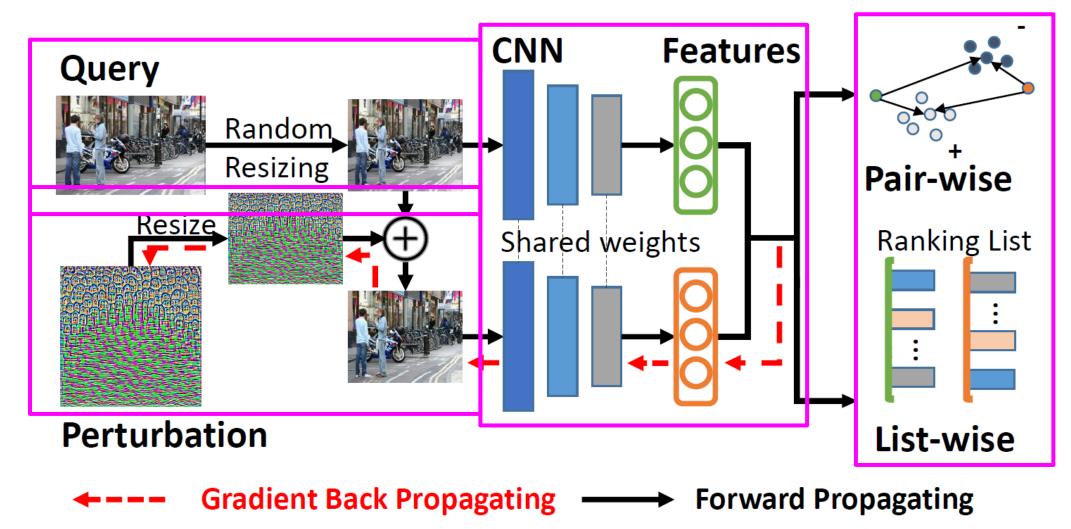


METHODS

Main Contributions

- Unlike UAP on classification, UAP on image retrieval:
 - 1. Corrupts <u>relationship among features</u>
 - Pair-wise loss
 - List-wise loss
 - 2. Adapts to <u>input images of various sizes</u>

Overall Pipeline



Objective Functions

- (baseline) <u>Label-wise loss</u>
 - Disrupts the <u>classification loss</u>
 - Same as the UAP on classification task (not proposed by this paper)

$$L = -\mathcal{H}ig(fig(x^{adv}ig),y_{gt}ig)$$

- where:
 - \mathcal{H} = cross-entropy loss
 - *f* = target classifier
 - x^{adv} = adversarial query
 - y_{gt} = ground truth class

Objective Functions

Pair-wise loss

- Disrupts the <u>Triplet Loss</u> switch "positive" and "negative" images
- Original Triplet Loss:

$$L = ||f_i - f_p||_2^2 - ||f_i - f_n||_2^2 + \alpha$$

Disturbed Triplet Loss:

$$L = || f'_{i} - f_{n} ||_{2}^{2} - || f'_{i} - f_{p} ||_{2}^{2} + \alpha$$

- where:
 - f_i = given query feature
 - f'_i = adversarial query feature
 - f_n = negative cluster feature
 - f_p = positive cluster feature
 - α = margin parameter

Objective Functions

List-wise Loss

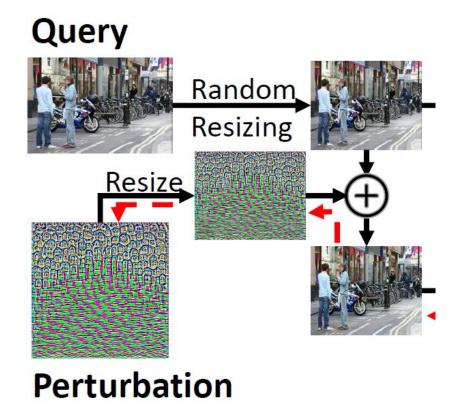
- Perturb the <u>entire ranking list</u>
- Disturbs normalized Discounted Cumulative Gain (NDCG) metric
 - Used to <u>measure relevance</u> of retrieved ranking list
 - Higher NDCG → more relevant search results
- Minimize NDCG to 0

$$DCG = \sum_{i=1}^{|g|} \frac{2^{y_i} - 1}{\log_2(i+1)}$$

- where
 - $\{y_i\}_{i=1}^{|g|}$ = relevance of search results
 - |g| = # elements in search results

Random Resizing

Random resizing to attack queries of various sizes



EXPERIMENTS

Target Models

- 3 feature extractors
 - AlexNet (A), VGG (V), ResNet (R)

6 models

- 2 pooling layers
 - GeM and MAC

- Feature extractors are:
 - Pretrained on ImageNet
 - Fine-tuned on SfM-120k dataset
- Attacks are evaluated on:
 - ROxford5k and RParis6k

Results of UAP Attack P = pair-wise loss L = list-wise loss

O = No attack

C = label-wise loss (baseline)

P = pair-wise loss

mAP = mean average precision (↓) mP@10 = mean precision @ 10 (↓) mDR = dropping (attack success) rate (↑)

		Ov ford5k ROx ford5k						Domin61s								
		Oxford5k	Е	M	Н	Е	M	Н	Paris6k	Е	M	Н	Е	M	Н	
Eval			mAP				mP@10			mAP				mP@10		mDR
A-MAC	О	57.11	45.23	32.96	10.43	57.25	55.43	15.36	65.64	63.99	46.93	20.06	88.00	91.29	58.29	
	C	46.99	36.13	27.89	7.86	49.58	48.36	12.71	57.91	52.96	40.33	16.27	80.86	83.00	48.86	15.47%
	P	29.61	24.52	17.99	4.92	32.06	30.86	6.67	42.89	38.71	30.43	11.13	52.86	54.71	29.14	44.35%
	L	27.88	21.59	16.31	4.06	28.33	28.57	7.50	41.15	37.40	29.28	10.00	49.29	51.43	25.00	48.33%
A-GeM	О	59.86	50.21	36.72	14.29	58.10	53.60	23.32	73.66	70.65	51.89	22.80	87.71	88.86	57.86	
	C	35.49	30.07	22.00	7.03	33.62	31.71	10.16	48.27	42.60	33.80	12.55	46.57	50.00	27.00	43.51%
	P	29.31	22.85	17.57	5.56	25.65	24.79	8.36	40.71	35.17	29.44	10.71	38.86	41.71	20.14	54.12%
	L	26.48	22.45	17.12	5.29	25.78	24.25	8.03	37.17	32.28	27.42	10.23	34.86	37.14	18.29	56.88%
V-MAC	О	81.45	75.07	57.15	29.96	78.60	78.33	45.57	88.31	86.39	69.60	44.97	93.57	96.86	84.71	
	C	42.70	37.15	30.14	14.87	35.59	36.14	20.43	34.15	29.88	27.37	12.48	18.57	18.86	12.43	61.80%
	P	37.60	32.33	26.99	14.49	35.15	35.29	20.57	23.76	21.02	20.12	9.21	13.86	15.57	9.86	66.94%
	L	35.57	29.83	24.97	13.13	32.79	32.29	19.71	25.38	22.13	20.99	9.23	15.29	17.14	10.43	67.96%
V-GeM	O	85.24	76.43	59.17	32.26	80.52	81.29	49.71	86.28	84.66	67.06	42.40	95.14	97.57	83.00	
	C	46.08	38.98	31.59	14.20	36.45	36.29	19.57	44.51	38.05	34.44	15.39	27.14	27.29	17.57	57.60%
	P	43.71	37.84	30.92	15.36	36.76	37.00	21.86	30.92	28.12	25.78	11.91	17.43	17.43	12.86	62.64%
	L	41.94	37.13	30.00	15.39	34.40	34.00	21.43	32.29	27.39	25.95	11.69	16.86	16.86	10.86	63.72%
R-MAC	O	81.69	73.85	56.14	29.80	78.33	79.86	46.57	83.55	81.56	63.91	39.06	93.52	96.71	79.57	
	C	58.52	50.65	37.50	15.59	56.47	54.29	24.71	67.57	61.51	49.43	25.01	70.00	72.43	49.57	31.27%
	P	35.31	30.34	24.73	13.37	36.62	36.43	20.71	35.66	32.61	27.23	12.12	32.57	34.86	21.29	59.71%
	L	34.08	28.68	23.30	12.09	34.26	32.95	19.86	34.63	30.71	26.16	11.50	28.00	29.71	18.43	62.60%
R-GeM	О	86.24	80.63	63.13	38.51	82.72	83.14	54.57	90.66	90.33	74.06	51.69	94.96	98.29	88.29	
	C	68.45	59.30	45.57	21.38	66.25	62.52	34.86	79.00	73.48	59.05	33.36	84.00	87.00	68.71	23.76%
	P	34.81	30.50	24.33	13.79	28.97	28.43	19.71	33.76	31.67	26.54	11.28	27.86	29.43	17.00	66.69%
	L	31.73	29.21	23.17	13.01	27.21	27.29	18.00	32.07	29.60	25.18	10.35	27.86	28.86	16.14	68.4 7%

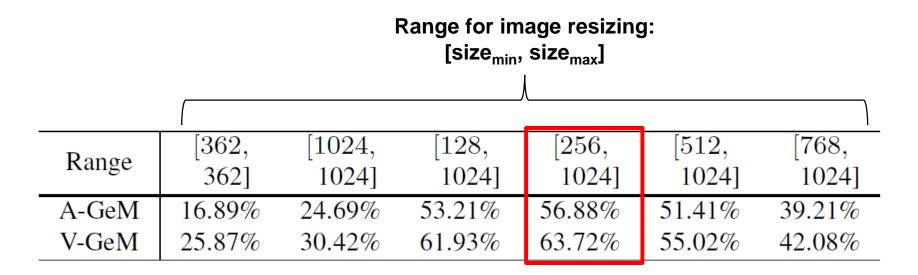
Results of Transfer Attack

Attack success rates (↑) on unknown models

Target models under attack A-GeM V-GeM R-GeM A-MAC V-MAC R-MAC A-MAC 48.33 34.94 13.60 10.78 8.57 11.27 A-GeM 38.18 56.88 14.31 12.00 7.64 12.22 Source 15.26 19.32 V-MAC 14.68 67.96 60.16 18.46 models V-GeM 19.87 15.66 16.30 66.16 63.72 18.24 for attack R-MAC 16.38 15.53 58.25 23.59 19.62 62.60 R-GeM 14.27 14.29 23.94 22.35 67.91 68.47

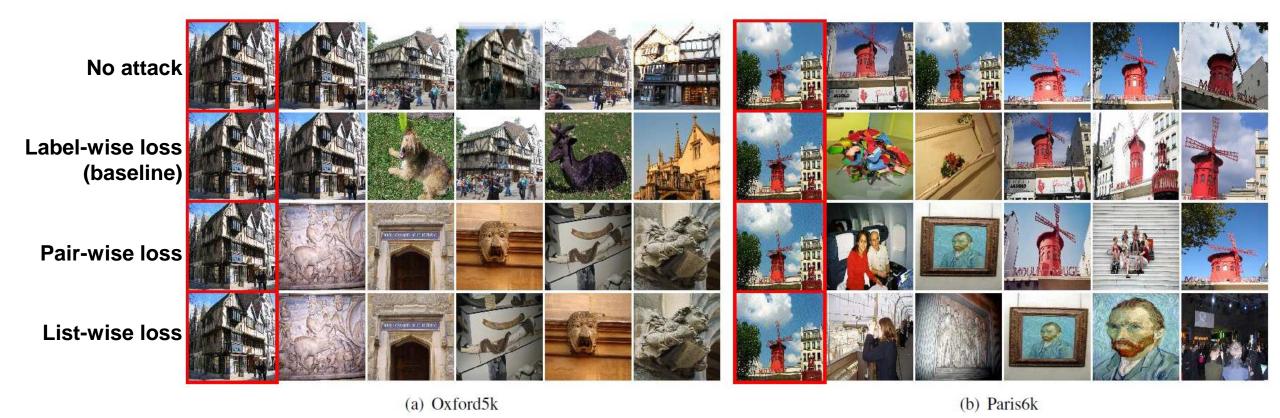
Effects of Resizing

Attack success rates (↑) w/ various resizings



Visualization

Retrieval results



CONCLUSION

Strengths & Weaknesses

Strengths

- First proposed pair-wise loss and list-wise loss to disrupt feature relationships
- Achieved high attack success rates on image retrieval compared to baseline label-wise loss

Weaknesses

- Show poor attack success rates on unknown models
 - e.g. AlexNet → VGG
- Lacks analysis on more current retrieval models
 - Attention module
 - Different pooling layers

